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When do we Know differential

equations have power series

solutions ? ( Section 8.3 )

Analyticity : A function F

is said to be analytic

at ×=C if there are
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Exempt : ( familiar Functions )
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This shows e×
,

sink

are analytic at C = 0

and In ( × ) is analytic

at C =L .

In fact ,
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Ordinary and Singular Points
.

We say
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Ordinary point of
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p , q are analytic at t.ec

( except possibly at t=c ) .

We say t= C is a singular

point if one of p or q

is not analytic at t=C .
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Regular and Irregular

Singular Points

A singular point x=C for

y
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regular if ( × - c ) PC x ) and

( × - c )2q( x ) are analytic at xic .
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irregular
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We get that ×= -2 is

a regular singular point

since f( × ) = I and

g ( xlix . 3 are both

analytic at ×=
- 2 .


