Announcements

1) HW \#5 due Thursday

We were solving

$$
y^{\prime \prime}+(t-1) y^{\prime}+y=0
$$

we assumed $y(t)=\sum_{n=0}^{\infty} a_{n} t^{n}$
and got

$$
\begin{aligned}
& (t-1) y^{\prime}=-a_{1}+\sum_{n=1}^{\infty}\left(n a_{n}-(n+1) a_{n+1}\right) t^{n} \\
& y^{\prime \prime}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} t^{n}
\end{aligned}
$$

$$
\begin{aligned}
& O=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} \\
& t^{n} \\
&+\sum_{n=0}^{\infty} a_{n} t^{n}-a_{1} \sum^{(t-1) y^{\prime}} \\
&+\sum_{n=1}^{\infty}\left(n a_{n}-(n+1) a_{n+1}\right) t^{n}
\end{aligned}
$$

Isolate t^{0} term, combine all others: bad!

$$
\begin{aligned}
O= & =\left(2 a_{2}+a_{0}-a_{1}\right)+ \\
& \sum_{n=1}^{\infty}(n+1)\left((n+2) a_{n+2}-a_{n+1}+a_{n}\right) t^{n}
\end{aligned}
$$

Seems difficult to create a pattern from

$$
\begin{aligned}
& 2 a_{2}-a_{1}+a_{0}=0 \\
& (n+1)\left((n+2) a_{n+2}-a_{n+1}+a_{n}\right)=0
\end{aligned}
$$

because there are three Coefficients in each one.

Instead: assume

$$
y(t)=\sum_{n=0}^{\infty} a_{n}(t-1)^{n}
$$

on some nonzero radius of convergence about $c=1$

$$
\begin{aligned}
& \text { Then } y^{\prime}(t)=\sum_{n=1}^{\infty} n a_{n}(t-1)^{n-1} \\
& (t-1) y^{\prime}(t)=\sum_{n=1}^{\infty} n a_{n}(t-1)^{n} \\
& y^{\prime}(t)=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2}(t-1)^{n}
\end{aligned}
$$

$$
\begin{aligned}
0 & =\sum_{\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2}(t-1)^{n}}^{y^{\prime \prime}} \\
& +\underbrace{\sum_{n=1}^{\infty} n a_{n}(t-1)^{n}+\sum_{y=0}^{\infty} a_{n}(t-1)^{n}}_{(t-1) y^{\prime}}
\end{aligned}
$$

Isolate $(t-1)^{0}$ coefficient, combine other terms

$$
O=2 a_{2}+a_{0}+\sum_{n=1}^{\infty}(n+1)\left(a_{n+2}(n+2)+a_{n}\right)(t-1)^{n}
$$

$$
O=2 a_{2}+a_{0}+\sum_{n=1}^{\infty}(n+1)\left(a_{n+2}(n+2)+a_{n}\right)(t-1)^{n}
$$

If equal to zero, coefficients must equal zeros so

$$
\begin{aligned}
& 2 a_{2}+a_{0}=0, a_{2}=-\frac{a_{0}}{2} \\
& n=2 \beta\left(4 a_{4}+a_{2}\right)=0 \\
& a_{4}=-\frac{a_{2}}{4}=\frac{a_{0}}{2.4} \\
& n=48\left(6 a_{6}+a_{4}\right)=0 \\
& a_{6}=\frac{-a_{4}}{6}=-\frac{a_{0}}{2.4 .6}
\end{aligned}
$$

Assuming a_{0} is chosen,

$$
a_{2 k}=\frac{(-1)^{k} a_{0}}{2^{k} k!}
$$

Assuming a_{1} is chosen,

$$
\begin{aligned}
n & =1: \not 2\left(3 a_{3}+a_{1}\right)
\end{aligned}=0 \quad \begin{aligned}
a_{3} & =\frac{-a_{1}}{3} \\
n & =3 \quad \times\left(5 a_{5}+a_{3}\right)
\end{aligned}=0
$$

$$
\begin{aligned}
& n=5: 6\left(7 a_{7}+a_{5}\right)=0 \\
& a_{7}=\frac{-a_{5}}{7}=-\frac{a_{1}}{7 \cdot 5 \cdot 3} \\
& n=7 \quad 8\left(9 a_{9}+a_{7}\right)=0 \\
& a_{9}=-\frac{97}{9}=\frac{a_{1}}{9 \cdot 7 \cdot 5 \cdot 3}
\end{aligned}
$$

In gencral,

$$
\begin{aligned}
& a_{2 k+1}=\frac{(-1)^{k} a_{1} 2^{k} k!}{(2 k+1)!} \\
& a_{7}(k=3)^{2 \cdot 2 \cdot 2 \cdot 3 \cdot 2 \cdot x} \\
& 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot x
\end{aligned}
$$

When do we know differential equations have power series solutions? (Section 8.3)

Analyticity: A function f is said to be analytic at $x=c$ if there are real numbers a_{0}, a_{1}, a_{2}, . with $f(x)=\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$
on some nonzero radius of convergence about $x=C$.

Example 2: (familiar functions)

$$
\begin{aligned}
& e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}(\text { radius }=\infty) \\
& \sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}(\text { radius }=\infty) \\
& \ln (x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-1)^{n}}{n}(\text { radius }=1)
\end{aligned}
$$

This shows $e^{x}, \sin (x)$ are analytic at $c=0$ and $\ln (x)$ is analytic at $c=1$. In fact, e^{x} and $\sin (x)$ will be analytic for all values of C, but $\ln (x)$ will only be analytic for $x>0$

Back to standard form

Given

$$
a(t) y^{\prime \prime}(t)+b(t) y^{\prime}(t)+c(t) y(t)=d(t),
$$

divide by $a(t)$ and set

$$
\begin{aligned}
& p(t)=\frac{b(t)}{a(t)}, q(t)=\frac{c(t)}{a(t)} \\
& r(t)=\frac{d(t)}{a(t)}
\end{aligned}
$$

Standard form: $y^{\prime \prime}+p(t) y^{\prime}(t)+q(t) y(t)$

$$
=r(t)
$$

Ordinary and Singular Points

We say $t=c$ is an ordinary point of $y^{\prime \prime}+p(t) y^{\prime}+q(t)$ if p, q are analytic at $t=c$ (except possibly at $t=c$).
We say $t=c$ is a singular point if one of p or a is not analytic at $t=c$.

Example 3: Find all singular points for

$$
\left(x^{2}-4\right) y^{\prime \prime}+(x-2) y^{\prime}+\left(x^{2}-5 x+6\right) y=0
$$

Divide by $x^{2}-4$

$$
\begin{aligned}
& y^{\prime \prime}+\frac{x-2}{\underbrace{2}_{p}-4} y^{\prime}+\underbrace{\frac{x^{2}-5 x+6}{x^{2}-4}}_{q} y=0 \\
& p(x)=\frac{x-2}{(x-2)(x+2)}=\frac{1}{x+2}(x \neq 2)
\end{aligned}
$$

$$
p(x)=\frac{x-2}{(x-2)(x+2)}=\frac{1}{x+2}(x \neq 2)
$$

Only singular point is $x=-2$.

$$
\begin{aligned}
q(x)=\frac{x^{2}-5 x+6}{x^{2}-4} & =\frac{(x-2)(x-3)}{(x-2)(x+2)} \\
& =\frac{x-3}{x+2} \\
& \text { except at } x=2
\end{aligned}
$$

Only singular point: $x=-2$

Regular and Irregular Singular Points

A singular point $x=C$ for $y^{\prime \prime}+p(x) y^{\prime}+q(x)$ is called regular if $(x-c) p(x)$ and $(x-c)^{2} q(x)$ are analytic at $x=c$. Otherwise, $x=C$ is called is regular

Example 4 : For

$$
y^{\prime \prime}+\frac{x-2}{x^{2}-4} y^{\prime}+\frac{x^{2}-5 x+6}{x^{2}-4} y
$$

we found that $x=-2$ is a singular point.

Since $\frac{x-2}{x^{2}-4}, x+2=\frac{x-2}{x-2}=1$

$$
\text { and } \begin{aligned}
\frac{x^{2}-5 x+6}{x^{2}-4}, x+2 & =\frac{x^{2}-5 x+6}{x-2} \\
& =x-3 \\
(x \neq \pm 2) & =
\end{aligned}
$$

We get that $x=-2$ is a regular singular point
since $f(x)=1$ and $g(x)=x-3$ are both analytic at $x=-2$.

